Some Inequalities on Chromatic Polynomials
نویسندگان
چکیده
For a given graph G, let P (G,λ) be the chromatic polynomial of G, where λ is considered to be a real number. In this paper, we study the bounds for P (G,λ)/P (G,λ − 1) and P (G,λ)/P (G − x, λ), where x is a vertex in G, λ ≥ n and n is the number of vertices of G.
منابع مشابه
Chromatic polynomials of some nanostars
Let G be a simple graph and (G,) denotes the number of proper vertex colourings of G with at most colours, which is for a fixed graph G , a polynomial in , which is called the chromatic polynomial of G . Using the chromatic polynomial of some specific graphs, we obtain the chromatic polynomials of some nanostars.
متن کاملChromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs
In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...
متن کاملSome compact generalization of inequalities for polynomials with prescribed zeros
Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$. In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$, $k^2 leq rRleq R^2$ and for $Rleq r leq k$. Our results refine and generalize certain well-known polynomial inequalities.
متن کاملThe Go polynomials of a graph
This paper introduces graph polynomials based on a concept from the game of Go. Suppose that, for each vertex of a graph, we either leave it uncoloured or choose a colour uniformly at random from a set of available colours, with the choices for the vertices being independent and identically distributed. We ask for the probability that the resulting partial assignment of colours has the followin...
متن کاملChromatic Polynomials
Table of contents Introduction 1. Relation of the present work to previous researches on map-coloring and summary of results. 356 2. Definitions. 358 Chapter I. First principles in the numerical and theoretical treatment of chromatic polynomials 1. The three fundamental principles. 362 2. The quadrilateral reduction formula. 363 3. The pentagon reduction formula. 365 4. The m-gon reduction form...
متن کامل